The latest research results of molybdenum diselenide
Scientists at Rice University have discovered that an atom-thick material being eyed for flexible electronics and next-generation optical devices is more brittle than they expected.
The Rice team led by materials scientist Jun Lou tested the tensile strength of two-dimensional, semiconducting molybdenum diselenide and discovered that flaws as small as one missing atom can initiate catastrophic cracking under strain.
The team's report appears this month in Advanced Materials.
The finding may cause industry to look more carefully at the properties of 2-D materials before incorporating them in new technologies, he said.
"It turns out not all 2-D crystals are equal," said Lou, a Rice professor of materials science and nanoengineering. "Graphene is a lot more robust compared with some of the others we're dealing with right now, like this molybdenum diselenide. We think it has something to do with defects inherent to these materials."
The defects could be as small as a single atom that leaves a vacancy in the crystalline structure, he said. "It's very hard to detect them," he said. "Even if a cluster of vacancies makes a bigger hole, it's difficult to find using any technique. It might be possible to see them with a transmission electron microscope, but that would be so labor-intensive that it wouldn't be useful."
Related Articles
The Aging Behavior research of Nano-SiC Composite F
The latest research results of molybdenum diselenid
the ultra thin wonder material Graphene
New aspect of nanotechnology applications
Boron Nitride nanotubes
New functional material Magnetic Liquid
The synthesis of nano size magnesium diboride powde
A brief introduction of Molybdenum disilicide